
	 	 	

Bridge Avoidance in
River‐based Drone Autonomy

Mahadev Satyanarayanan
ORCID: 0000‐0002‐2187‐2049
Carnegie Mellon University

FINAL REPORT

July 25, 2023

DISCLAIMER
The contents of this report reflect the views of the authors, who are responsible for
the facts and the accuracy of the information presented herein. This document is
disseminated in the interest of information exchange. The report is funded,
partially or entirely, under [grant number 69A3551747111 from the U.S.
Department of Transportation’s University Transportation Centers Program. The
U.S. Government assumes no liability for the contents or use thereof.

1 Introduction

Rivers have served as transportation corridors for goods and people since the dawn of civi-
lization. Today, they offer promise as natural safe corridors for autonomous drone flights. By
using rivers as corridors, the flight paths of large, load-bearing drones over heavily populated
urban areas can be kept to a minimum, thus improving public safety. Rivers interconnect
communities and could become an ideal proving ground for drone transportation. We aim for
fully autonomous flight: i.e., pre-programmed flight without a remote human pilot, including
mission-specific actions in response to runtime observations.

A major challenge to autonomous drone flight over rivers are the numerous bridges.
These large metallic structures distort wireless signals, and lead to unreliable GPS-based
navigation. There is no human pilot to use his or her acute vision and intelligence to guide
the drone. How does an autonomous drone avoid these obstacles reliably and safely?

For task autonomy, greater intelligence correlates with more powerful on-board comput-
ing and richer sensing. However, drones can only carry a limited payload. This is unlike
an autonomous road vehicle that can easily carry LiDAR, multiple video cameras, and all
the necessary compute capability. The weight of these sensing and computing entities re-
duces the working payload. By reducing weight to a minimum, we can optimize the working
payload and hence the economic viability of drone-based transportation.

The key to overcoming on-board sensing and processing limitations is to offload intensive
processing to ground-based computing infrastructure over a wireless link. In this research,
we explore the use of an ultra-light drone for task autonomy. Our goal is to develop the
software and algorithms needed for task autonomy on these lightweight platforms and perfect
them, before advancing to heavier drones with substantial payload lift. From the viewpoint
of public safety, small and light-weight drones are much more attractive than large drones.
In case of catastrophic failure, the kinetic energy of a small drone is much less than that
of larger and heavier drones. Inital experimentation with ultra-light drones to develop the
software for navigation and obstacle avoidance is thus a prudent approach. In this report,
we document the results of our efforts towards the use of vision-based navigation for bridge
avoidance on an ultra-light drone platform.

2 Flight Platform

The commercial-off-the-shelf (COTS) drone used in our experiments is the Parrot Anafi
(320 g) shown in Figure 1. This drone is progammable via an Android API called Parrot
Ground SDK. The API gives full flight control and access to on-board sensors. The only
unmet requirement is cellular connectivity. We provide this missing capability by physically
attaching a COTS device that supports both Wi-Fi and 4G/5G as payload to the drone. In
its simplest form, this device would merely serve as a network relay. A more capable device
could also perform some bidirectional on-board processing.

Smartphones are the cheapest and most widely-used COTS devices that support both
Wi-Fi and 4G/5G. Unfortunately, even the lightest available Android smartphone (Jelly
Pro) weighs 61 g. This is well above the 50 g limit that we have experimentally determined
to be the safe payload limit of the Parrot ANAFI drone. Above this limit, the drone’s flight

1

Figure 2: Watch

Figure 1: Drone Figure 3: Drone with Watch Payload Figure 4: Processing Pipeline

characteristics degrade significantly. Smartwatches are the only other Android devices that
support both Wi-Fi and 4G/5G. We selected the Samsung Galaxy Watch 4 (Figure 2) since
it weighs only 26 g, and is able to run Android apps using the Parrot Ground SDK.

The drone’s Ground SDK API enables an external Android device to control flight and
imaging over Wi-Fi. This external Android device is usually a ground-based smartphone
controller operated by a human pilot. In our system, the external Android device is the
smartwatch that flies with the drone. It is physically attached to the drone using a custom
3D-printed harness weighing 14 g (Figure 3). On this platform, an Android app communi-
cates with the drone over WiFi, and controls it using the Ground SDK API. It also offloads
compute-intensive tasks to a ground-based ES over 4G LTE, as shown in Figure 4.

3 End-to-End Pipeline Characterization

3.1 Drone Video Stream

The agility and accuracy of our active vision algorithms are critically dependent on the
attributes of the video stream received by the ES. Video from the Parrot Anafi consists
of a 720p UDP RTSP stream at 30 FPS [2]. This RTSP stream is produced by hardware
on the drone; neither its resolution nor its frame rate are configurable. Although RTSP
is an Internet standard, the Anafi does not use standard keyframe-based stream encoding.
Instead, it uses a proprietary slice encoding and intra-refresh scheme that disperses keyframe
slices across multiple packet transmissions. The motivation for this non-standard design
choice is that it reduces the visual impact of packet loss arising from UDP-based RTSP
transmission. A negative consequence of this encoding is that software decoding of the
proprietary stream format is necessary before individual frames can be selectively dropped
to lower frame rate. Such throttling is necessary because of LTE transmission limitations of
the watch, as discussed in the next section.

3.2 Thermally-Constrained LTE Transmission

The watch is an austere computing environment with a dual-core 1.18 GHz ARM Cortex-
A55 processor, 1.5 GB RAM, and 16 GB flash. Figure 5 compares its attributes to two

2

Samsung Unihertz Google
Galaxy Jelly Pixel
Watch Pro 4a

Weight 26 g 61 g 143 g
CPU cores 2 4 8
CPU speed 1.18 GHz 1.45 GHz 2.2 GHz
Memory 1.5 GB 3 GB 6 GB

Figure 5: Austerity of Mobile Hardware

other contemporary mobile devices. The Google Pixel 4a is a widely-used smartphone,
while the Unihertz Jelly Pro is the lightest available COTS Android smartphone. We have
experimentally determined that their 143 g and 61 g weights are too high to be safe payloads
for the ANAFI drone. In contrast, our payload weight of 40 g is light enough for sustained
flight without any adverse effects.

As wearable hardware, the watch has stringent thermal protection to shut itself down if
its temperature approaches human limits. Both computing and network transmission cause
watch temperature to rise significantly. The experiments discussed below show that LTE
transmission is the thermal bottleneck.

Samsung
Galaxy
Watch

Unihertz
Jelly
Pro

Google
Pixel
4a

Pass-thru @ 30 FPS
Decode and Send @ 2 FPS
Decode and Send @ 0.7 FPS

68 s
240 s
N/A

N/A
360 s
N/A

N/A
N/A
N/A

Input is 720p RTSP video stream at 30 FPS
“N/A” → configuration was unaffected by thermal issues
“Thermal anomaly” → shutdown or severe clock slowdown

Figure 6: Time to Thermal Anomalies

Figure 6 shows the thermal impact of our processing pipeline. As the first row indicates,
just receiving the RTSP stream over WiFi and retransmitting it via LTE causes thermal
shutdown in 68 seconds. This points to LTE as the source of thermal issues. The bottleneck
can be alleviated by slowing down LTE transmission, as shown by the bottom two rows of
Figure 6. At 2 FPS, the thermal effects are delayed until 240 s. At 0.7 FPS, the watch is
able to sustain transmission indefinitely with no serious thermal effects. Reducing frame rate
imposes considerable CPU load, since the input RTSP video stream has to be decoded in
software before individual frames can be reconstructed and dropped. Pass-thru, in contrast,
involves virtually no CPU load. Yet, thermal shutdown occurs much faster (68 s) with pass-
thru. Since WiFi reception and decoding are constant at 30 FPS in all these cases, LTE
transmission is strongly implicated in the thermal bottleneck. The situation is inverted with
Jelly Pro. Pass-thru involves no thermal issues, but decoding the RTSP stream in order to
drop the frame rate to 2 FPS causes thermal anomalies after 360 s. The Pixel 4a is totally
unaffected by these thermal issues.

To better understand the watch’s thermal sensitivity to LTE transmission, we created a

3

Sleep Payload Size
Interval 35 KB 100 KB
33 ms 5 5
100 ms 5 5
500 ms 5 5
800 ms 5 5

1000 ms 4 4

5 thermal shutdown
4 no thermal shutdown

Figure 7: Effect of Sleeps Figure 8: Rise in Watch Temperature

simple stress workload. It consists of a loop in which a fixed-size memory buffer is transmitted
via LTE, followed by a sleep of fixed duration. No video stream is involved. Before each run of
the experiment, we cool the watch down to 50° F using an ice pack. Figure 7 shows our results
for different sleep intervals and two payload sizes that are representative of typical video
frames in our experiments. Regardless of payload size, the watch suffers thermal shutdown
within a few minutes at sleep intervals below 1000 ms. Above 1000 ms, no thermal shutdown
is experienced for the entire flight duration. These results confirm LTE transmission as the
thermal bottleneck. With heat produced by decoding factored in, we have found that a
frame rate of 0.7 FPS is the highest sustainable.

Figure 8 shows the rise in external temperature of the watch over time under different
streaming loads (0.7 FPS and 2 FPS). The circles indicate the points at which the video
stream begins to show artifacts, likely from CPU throttling due to heat. The square indicates
thermal shutdown. Initially, the watch temperature climbs rapidly at both 0.7 and 2 FPS.
Frame degradation begins at around 240 s at 2 FPS and at around 600 s at 0.7 FPS. At
2 FPS, the number of visual artifacts observed is considerable, with several unusable frames.
At 0.7 FPS, artifacts are minimal and do not greatly affect frame quality. The 2 FPS stream
causes thermal shutdown at 1110 s at a temperature of 108◦F (42◦C). In contrast, the 0.7 FPS
stream plateaus at 104◦F (40◦C) without ever shutting down.

The extreme austerity and capacity of the watch are thus first-order design considerations
in our system. Weight and thermal issues constrain both onboard processing and offloading.
Although the ground-based ES can be very powerful, only modest use of its resources can be
made while the drone is in flight — at most one 720p frame’s worth of image processing per
second. This limits the agility of the drone in active vision settings. With improved watch
technology or a less thermally constrained offload device, higher LTE transmission rates will
become possible, thus improving agility. Our current implementation reflects the constraints
of today’s COTS hardware.

4 Obstacle Avoidance

Many commercial drones have on-board obstacle avoidance capabilities, typically based on
stereoscopic cameras with optical flow algorithms. The Parrot Anafi Ai has such capability,
and can move out of the way of obstacles when the drone is moving forwards or backwards.

4

(a) (b)
Our Platform Anafi Ai

Figure 9: Obstacle Avoidance Experiment Results

Our platform only has a single RGB camera, and must therefore rely upon monocular depth
estimation. We use a DNN-based algorithm called MiDaS [1] to provide relative depth
estimates. Using MiDaS inference on each frame received by the ES, we construct the
inverse relative depth map. Based on the rate of change of relative depth across frames, we
identify obstacles in the flight path and actuate away from them.

Our experiments compare our flight platform’s monocular obstacle avoidance, using our
visual pipeline at 0.7 FPS, with the stereoscopic obstacle avoidance of the Anafi Ai using
on-board computing at 30 FPS. We place a 2 m tall by 0.5 m wide foam pillar directly in
the drone’s path. The drone is instructed to fly at 1 m/s at a fixed altitude of 1 m directly
towards the obstacle. We capture a trace of the drone’s flight path across 3 different runs.

Figure 9(a) plots the flight path of each run for our platform, along with the position
of the pillar. Figure 9(b) plots the flight paths of the Anafi Ai on the same task. Both
platforms successfully avoid the obstacle in all cases, but do so using very different tactics.
The low frame rate and high end-to-end latency of our pipeline forces our platform to be
very conservative, and to give the obstacle a wide berth. Well past the obstacle, the drone
has not yet returned to its original flight path. In contrast, the stereoscopic cameras, high
frame rate and low end-to-end processing latency of the Anafi Ai together enable it to be
much less conservative in obstacle avoidance. The flight paths cluster more tightly around
the obstacle, and the drone soon returns to its original flight path.

Using this obstacle avoidance algorithm, we have successfully demonstrated bridge avoid-
ance during autonomous flight by our platform. The specific bridge was the Hot Metal Bridge
on the Monongahela river in Pittsburgh. Figure 10(a) shows an input frame from one of
our flights, as the drone approaches a pillar on this bridge. Figure 10(b) shows the depth-
encoded output of our algorithm on this frame. The green dot labeled “safe” indicates the
point towards which the drone actuates to safely avoid the pillar on the left. A live demo of

5

(a) (b)
Raw Input Frame of Hot Metal Bridge Output of Our Algorithm

Figure 10: Bridge Obstacle Avoidance

this capability was demonstrated to a number of observers (including Stan Caldwell, Exec-
utive Director of Traffic21 Institute) on June 6, 2023. The demo worked flawlessly, with the
drone returning safely to the takeoff location.

5 Conclusion

Our research has demonstrated that safe vision-based navigation by autonomous drones
using edge computing is feasible on an ultra-light drone. Our results show that bridges,
which are the main obstacles in drone corridors over rivers, can be safely navigated using
this approach. By devoting minimal payload to on-board computing, our approach frees up
substantial headroom for working payload. Our work demonstrates that by using rivers as
corridors, the flight paths of large, load-bearing drones over heavily populated urban areas
can be kept to a minimum, thus improving public safety.

References

[1] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Koltun, V. Towards Robust
Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence 44, 3 (2022), 1623–1637.

[2] Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M., and Stiemerling, M.
Real-Time Streaming Protocol Version 2.0. Tech. Rep. RFC 7826, Internet Engineering Task
Force (IETF), December 2016.

6

	utc2022final.pdf
	Introduction
	Flight Platform
	End-to-End Pipeline Characterization
	Drone Video Stream
	Thermally-Constrained LTE Transmission

	Obstacle Avoidance
	Conclusion

Accessibility Report

		Filename:

		Bridge Avoidance in River Based Drone Autonomy_202307_REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 25

		Failed: 4

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

