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1 Introduction 

Rivers have served as transportation corridors for goods and people since the dawn of civi-
lization. Today, they offer promise as natural safe corridors for autonomous drone flights. By 
using rivers as corridors, the flight paths of large, load-bearing drones over heavily populated 
urban areas can be kept to a minimum, thus improving public safety. Rivers interconnect 
communities and could become an ideal proving ground for drone transportation. We aim for 
fully autonomous flight: i.e., pre-programmed flight without a remote human pilot, including 
mission-specific actions in response to runtime observations. 

A major challenge to autonomous drone flight over rivers are the numerous bridges. 
These large metallic structures distort wireless signals, and lead to unreliable GPS-based 
navigation. There is no human pilot to use his or her acute vision and intelligence to guide 
the drone. How does an autonomous drone avoid these obstacles reliably and safely? 

For task autonomy, greater intelligence correlates with more powerful on-board comput-
ing and richer sensing. However, drones can only carry a limited payload. This is unlike 
an autonomous road vehicle that can easily carry LiDAR, multiple video cameras, and all 
the necessary compute capability. The weight of these sensing and computing entities re-
duces the working payload. By reducing weight to a minimum, we can optimize the working 
payload and hence the economic viability of drone-based transportation. 

The key to overcoming on-board sensing and processing limitations is to offload intensive 
processing to ground-based computing infrastructure over a wireless link. In this research, 
we explore the use of an ultra-light drone for task autonomy. Our goal is to develop the 
software and algorithms needed for task autonomy on these lightweight platforms and perfect 
them, before advancing to heavier drones with substantial payload lift. From the viewpoint 
of public safety, small and light-weight drones are much more attractive than large drones. 
In case of catastrophic failure, the kinetic energy of a small drone is much less than that 
of larger and heavier drones. Inital experimentation with ultra-light drones to develop the 
software for navigation and obstacle avoidance is thus a prudent approach. In this report, 
we document the results of our efforts towards the use of vision-based navigation for bridge 
avoidance on an ultra-light drone platform. 

2 Flight Platform 

The commercial-off-the-shelf (COTS) drone used in our experiments is the Parrot Anafi 
(320 g) shown in Figure 1. This drone is progammable via an Android API called Parrot 
Ground SDK. The API gives full flight control and access to on-board sensors. The only 
unmet requirement is cellular connectivity. We provide this missing capability by physically 
attaching a COTS device that supports both Wi-Fi and 4G/5G as payload to the drone. In 
its simplest form, this device would merely serve as a network relay. A more capable device 
could also perform some bidirectional on-board processing. 

Smartphones are the cheapest and most widely-used COTS devices that support both 
Wi-Fi and 4G/5G. Unfortunately, even the lightest available Android smartphone (Jelly 
Pro) weighs 61 g. This is well above the 50 g limit that we have experimentally determined 
to be the safe payload limit of the Parrot ANAFI drone. Above this limit, the drone’s flight 

1 



Figure 2: Watch 

Figure 1: Drone Figure 3: Drone with Watch Payload Figure 4: Processing Pipeline 

characteristics degrade significantly. Smartwatches are the only other Android devices that 
support both Wi-Fi and 4G/5G. We selected the Samsung Galaxy Watch 4 (Figure 2) since 
it weighs only 26 g, and is able to run Android apps using the Parrot Ground SDK. 

The drone’s Ground SDK API enables an external Android device to control flight and 
imaging over Wi-Fi. This external Android device is usually a ground-based smartphone 
controller operated by a human pilot. In our system, the external Android device is the 
smartwatch that flies with the drone. It is physically attached to the drone using a custom 
3D-printed harness weighing 14 g (Figure 3). On this platform, an Android app communi-
cates with the drone over WiFi, and controls it using the Ground SDK API. It also offloads 
compute-intensive tasks to a ground-based ES over 4G LTE, as shown in Figure 4. 

3 End-to-End Pipeline Characterization 

3.1 Drone Video Stream 

The agility and accuracy of our active vision algorithms are critically dependent on the 
attributes of the video stream received by the ES. Video from the Parrot Anafi consists 
of a 720p UDP RTSP stream at 30 FPS [2]. This RTSP stream is produced by hardware 
on the drone; neither its resolution nor its frame rate are configurable. Although RTSP 
is an Internet standard, the Anafi does not use standard keyframe-based stream encoding. 
Instead, it uses a proprietary slice encoding and intra-refresh scheme that disperses keyframe 
slices across multiple packet transmissions. The motivation for this non-standard design 
choice is that it reduces the visual impact of packet loss arising from UDP-based RTSP 
transmission. A negative consequence of this encoding is that software decoding of the 
proprietary stream format is necessary before individual frames can be selectively dropped 
to lower frame rate. Such throttling is necessary because of LTE transmission limitations of 
the watch, as discussed in the next section. 

3.2 Thermally-Constrained LTE Transmission 

The watch is an austere computing environment with a dual-core 1.18 GHz ARM Cortex-
A55 processor, 1.5 GB RAM, and 16 GB flash. Figure 5 compares its attributes to two 
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Samsung Unihertz Google 
Galaxy Jelly Pixel 
Watch Pro 4a 

Weight 26 g 61 g 143 g 
CPU cores 2 4 8 
CPU speed 1.18 GHz 1.45 GHz 2.2 GHz 
Memory 1.5 GB 3 GB 6 GB 

Figure 5: Austerity of Mobile Hardware 

other contemporary mobile devices. The Google Pixel 4a is a widely-used smartphone, 
while the Unihertz Jelly Pro is the lightest available COTS Android smartphone. We have 
experimentally determined that their 143 g and 61 g weights are too high to be safe payloads 
for the ANAFI drone. In contrast, our payload weight of 40 g is light enough for sustained 
flight without any adverse effects. 

As wearable hardware, the watch has stringent thermal protection to shut itself down if 
its temperature approaches human limits. Both computing and network transmission cause 
watch temperature to rise significantly. The experiments discussed below show that LTE 
transmission is the thermal bottleneck. 

Samsung 
Galaxy 
Watch 

Unihertz 
Jelly 
Pro 

Google 
Pixel 
4a 

Pass-thru @ 30 FPS 
Decode and Send @ 2 FPS 
Decode and Send @ 0.7 FPS 

68 s 
240 s 
N/A 

N/A 
360 s 
N/A 

N/A 
N/A 
N/A 

Input is 720p RTSP video stream at 30 FPS 
“N/A” → configuration was unaffected by thermal issues 
“Thermal anomaly” → shutdown or severe clock slowdown 

Figure 6: Time to Thermal Anomalies 

Figure 6 shows the thermal impact of our processing pipeline. As the first row indicates, 
just receiving the RTSP stream over WiFi and retransmitting it via LTE causes thermal 
shutdown in 68 seconds. This points to LTE as the source of thermal issues. The bottleneck 
can be alleviated by slowing down LTE transmission, as shown by the bottom two rows of 
Figure 6. At 2 FPS, the thermal effects are delayed until 240 s. At 0.7 FPS, the watch is 
able to sustain transmission indefinitely with no serious thermal effects. Reducing frame rate 
imposes considerable CPU load, since the input RTSP video stream has to be decoded in 
software before individual frames can be reconstructed and dropped. Pass-thru, in contrast, 
involves virtually no CPU load. Yet, thermal shutdown occurs much faster (68 s) with pass-
thru. Since WiFi reception and decoding are constant at 30 FPS in all these cases, LTE 
transmission is strongly implicated in the thermal bottleneck. The situation is inverted with 
Jelly Pro. Pass-thru involves no thermal issues, but decoding the RTSP stream in order to 
drop the frame rate to 2 FPS causes thermal anomalies after 360 s. The Pixel 4a is totally 
unaffected by these thermal issues. 

To better understand the watch’s thermal sensitivity to LTE transmission, we created a 
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Sleep Payload Size 
Interval 35 KB 100 KB 
33 ms 5 5 
100 ms 5 5 
500 ms 5 5 
800 ms 5 5 

1000 ms 4 4 

5 thermal shutdown 
4 no thermal shutdown 

Figure 7: Effect of Sleeps Figure 8: Rise in Watch Temperature 

simple stress workload. It consists of a loop in which a fixed-size memory buffer is transmitted 
via LTE, followed by a sleep of fixed duration. No video stream is involved. Before each run of 
the experiment, we cool the watch down to 50° F using an ice pack. Figure 7 shows our results 
for different sleep intervals and two payload sizes that are representative of typical video 
frames in our experiments. Regardless of payload size, the watch suffers thermal shutdown 
within a few minutes at sleep intervals below 1000 ms. Above 1000 ms, no thermal shutdown 
is experienced for the entire flight duration. These results confirm LTE transmission as the 
thermal bottleneck. With heat produced by decoding factored in, we have found that a 
frame rate of 0.7 FPS is the highest sustainable. 

Figure 8 shows the rise in external temperature of the watch over time under different 
streaming loads (0.7 FPS and 2 FPS). The circles indicate the points at which the video 
stream begins to show artifacts, likely from CPU throttling due to heat. The square indicates 
thermal shutdown. Initially, the watch temperature climbs rapidly at both 0.7 and 2 FPS. 
Frame degradation begins at around 240 s at 2 FPS and at around 600 s at 0.7 FPS. At 
2 FPS, the number of visual artifacts observed is considerable, with several unusable frames. 
At 0.7 FPS, artifacts are minimal and do not greatly affect frame quality. The 2 FPS stream 
causes thermal shutdown at 1110 s at a temperature of 108◦F (42◦C). In contrast, the 0.7 FPS 
stream plateaus at 104◦F (40◦C) without ever shutting down. 

The extreme austerity and capacity of the watch are thus first-order design considerations 
in our system. Weight and thermal issues constrain both onboard processing and offloading. 
Although the ground-based ES can be very powerful, only modest use of its resources can be 
made while the drone is in flight — at most one 720p frame’s worth of image processing per 
second. This limits the agility of the drone in active vision settings. With improved watch 
technology or a less thermally constrained offload device, higher LTE transmission rates will 
become possible, thus improving agility. Our current implementation reflects the constraints 
of today’s COTS hardware. 

4 Obstacle Avoidance 

Many commercial drones have on-board obstacle avoidance capabilities, typically based on 
stereoscopic cameras with optical flow algorithms. The Parrot Anafi Ai has such capability, 
and can move out of the way of obstacles when the drone is moving forwards or backwards. 
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(a) (b) 
Our Platform Anafi Ai 

Figure 9: Obstacle Avoidance Experiment Results 

Our platform only has a single RGB camera, and must therefore rely upon monocular depth 
estimation. We use a DNN-based algorithm called MiDaS [1] to provide relative depth 
estimates. Using MiDaS inference on each frame received by the ES, we construct the 
inverse relative depth map. Based on the rate of change of relative depth across frames, we 
identify obstacles in the flight path and actuate away from them. 

Our experiments compare our flight platform’s monocular obstacle avoidance, using our 
visual pipeline at 0.7 FPS, with the stereoscopic obstacle avoidance of the Anafi Ai using 
on-board computing at 30 FPS. We place a 2 m tall by 0.5 m wide foam pillar directly in 
the drone’s path. The drone is instructed to fly at 1 m/s at a fixed altitude of 1 m directly 
towards the obstacle. We capture a trace of the drone’s flight path across 3 different runs. 

Figure 9(a) plots the flight path of each run for our platform, along with the position 
of the pillar. Figure 9(b) plots the flight paths of the Anafi Ai on the same task. Both 
platforms successfully avoid the obstacle in all cases, but do so using very different tactics. 
The low frame rate and high end-to-end latency of our pipeline forces our platform to be 
very conservative, and to give the obstacle a wide berth. Well past the obstacle, the drone 
has not yet returned to its original flight path. In contrast, the stereoscopic cameras, high 
frame rate and low end-to-end processing latency of the Anafi Ai together enable it to be 
much less conservative in obstacle avoidance. The flight paths cluster more tightly around 
the obstacle, and the drone soon returns to its original flight path. 

Using this obstacle avoidance algorithm, we have successfully demonstrated bridge avoid-
ance during autonomous flight by our platform. The specific bridge was the Hot Metal Bridge 
on the Monongahela river in Pittsburgh. Figure 10(a) shows an input frame from one of 
our flights, as the drone approaches a pillar on this bridge. Figure 10(b) shows the depth-
encoded output of our algorithm on this frame. The green dot labeled “safe” indicates the 
point towards which the drone actuates to safely avoid the pillar on the left. A live demo of 
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(a) (b) 
Raw Input Frame of Hot Metal Bridge Output of Our Algorithm 

Figure 10: Bridge Obstacle Avoidance 

this capability was demonstrated to a number of observers (including Stan Caldwell, Exec-
utive Director of Traffic21 Institute) on June 6, 2023. The demo worked flawlessly, with the 
drone returning safely to the takeoff location. 

5 Conclusion 

Our research has demonstrated that safe vision-based navigation by autonomous drones 
using edge computing is feasible on an ultra-light drone. Our results show that bridges, 
which are the main obstacles in drone corridors over rivers, can be safely navigated using 
this approach. By devoting minimal payload to on-board computing, our approach frees up 
substantial headroom for working payload. Our work demonstrates that by using rivers as 
corridors, the flight paths of large, load-bearing drones over heavily populated urban areas 
can be kept to a minimum, thus improving public safety. 
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